
Discovering API Usability
Problems at Scale

Emerson Murphy-Hill, NC State*
Caitlin Sadowski, Google
Andrew Head, UC Berkeley*
John Daughtry, Google
Andrew Macvean, Google
Ciera Jaspan, Google
Collin Winter, Google

*Emerson and Andrew
completed this work while a

visiting scientist and intern at

API Misuse is widespread: 88% of Google Play applications have at least
one API usage mistake [3]

Better API design can improve API usability

API usability evaluation techniques are expensive
(experiments/interviews)

Scalable techniques lower fidelity (e.g. Stack Overflow, MSR)

Detailed API usability problems at scale?

[3] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An empirical study of cryptographic misuse in android applications. In
Proceedings of the Conference on Computer & Communications Security. 73–84.

Context: Software Development at Google

● Giant codebase (2+billion LOC)
● Browsable patches
● FUSE-based file system stores every save

Approach: Stop Motion

1. Identify patches of interest (java files)
2. Identify file snapshots associated with the patch
3. Compare adjacent file snapshots using JDT (Java Development Tools)

and Gumtree (AST differencing tool) to produce AST diff
4. Identify API changes of interest

obj.a(...) → obj.b(...)

Study

About 3 weeks of patches from July 2017

Two patterns:
● Method call: obj.a(...) to obj.b(...)
● Static method call: Class.a(...) to Class.b(...)

APIs that frequently satisfied pattern

Limitations

● Requires fine-grained snapshots
● Does not work predictably in the presence of syntax errors
● Only finds method replacement patterns
● Currently manual analysis, summarization, and visualization
● Results are most frequent changes, not most important changes

Results: Collections

void foo(List<String> s){

ImmutableList.of(s);

void foo(List<String> s){

ImmutableList.copyOf(s);

174 times, engineers changed:

of to copyOf

Results: Collections

void foo(List<String> s){

ImmutableList.of(s);

void foo(List<String> s){

ImmutableList.copyOf(s);

https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/ImmutableList.html

Results: Protocol Buffers

27 times, engineers changed:

copyFrom to copyfromUTF8

Results: Protocol Buffers

27 times, engineers changed:
copyFrom to copyFromUtf8

https://developers.google.com/protocol-buffers/docs/reference/java/com/google/protobuf/ByteString

Results: Optional

Optional<String> optStr =

 Optional.of(getString());

if(optStr.isPresent() {

 return optStr.get();

}

Hundreds of changes between two
versions of this API:

● Java Platform 8
● Guava

Results: Optional

Optional<String> optStr =

 Optional.of(getString());

if(optStr.isPresent() {

 return optStr.get();

}

Results: Logging

Log.v()

Log.d()

Log.i()

Log.w()

Log.e()

Log.wtf()

When to use each logging method?

● Number one question on
StackOverflow for Android
logging

Results: Logging

When to use each logging method?

Stop Motion: API updates into insights

● Names which don’t document difference are confusing (of vs copyOf)
● Developers will confuse similar names (copyFrom vs copyFromUtf8)
● Having two similar but not the same APIs is costly (optional)
● Getting the right level of log statements is hard

Future Work

● Automation
● Address limitations
● Browsable results for API maintainers
● Suggestions when making common edits.

Stop Motion: API updates into insights

● Names which don’t document difference are confusing (of vs copyOf)
● Developers will confuse similar names (copyFrom vs copyFromUtf8)
● Having two similar but not the same APIs is costly (optional)
● Getting the right level of log statements is hard

