
MAPPING THE LANDSCAPE OF REFACTORING
RESEARCH

AKA – REFACTORING THE REFACTORING
Danny Dig

1

What is Refactoring?

“A change made to the internal structure of
software to make it easier to understand and
cheaper to modify without changing
its observable behaviour” – M. Fowler [1999]

Top-level menu in all modern IDEs

2

- In 2000, I created the first
open-source refactoring tool

Refactoring research growth

2,880 refactoring papers (4,944 authors) since 1990

3

The Humble Beginnings

First refactoring paper:
- Bill Opdyke and Ralph Johnson [SOPPA’90]: Refactoring, an

Aid in designing application frameworks and evolving OO systems

PhD dissertations:
- Bill Griswold ‘91 at U of Washington
- Bill Opdyke ‘92 at U of Illinois
- Don Roberts ‘99 at U of Illinois

Refactoring research hard to publish in early 90s
- conflated with the compiler community

4

Most recent Decade of Refactoring Research

2,880 refactoring papers since 1990

2,442 papers between 2005-2016

5

T. Mens

Corpus of Papers

Work done by Marouane Kessentini and his team at Michigan

Scopus and Web of Science
- "Refactoring” in title, abstract, and keywords
- yielded 3277 papers

Refactoring definition:
- transformation with behavior preservation

Manual validation of ALL papers:
- each paper analyzed title, abstract (and sometimes content)
- 4 grad students who took a graduate class on Softw QA,
- Kessentini (faculty) looked at the contentious papers

In the end we removed 397 papers
6

O1: To Grow, Welcome Outsiders,
Champions from Other Communities

800 citations
37 pubs

7

O2: To Grow, Expand Focus of Interest
(the WHAT)

automating

insight
testing

prioritization

inference
recommendation

8

Expand focus to meet new needs that you can serve

O3: To Grow, Expand the Target Artefacts

Expand target: new refactoring research is about change
to the code, models, architecture, DB, UI

code

models

architecture

DB
UI

9

O4: To Grow, Expand Objectives (the WHY)

Expand Objectives: new refactoring research is to improve
performance, security, migration (beyond internal quality)

performance

internal quality

security

migration

10

O5: To Increase Practical Impact,
Work with Industry

Open-source data

industrial data

Industrial collaboration levels:
- surveys with practitioners
- tool validated on industrial codebase
- tool licensed to industry, adopted in products

11

Big Growth of the Field: Expanding Definition

“Automation/insight/testing/prioritization of changes to
the artifacts of software to improve non-functional
requirements and without changing its proper, intended
behaviour” – D. Dig ‘17

“A change made to the internal structure of software to
make it easier to understand and cheaper to modify
without changing its observable behaviour” – M. Fowler ‘99

12

Expanded Focus, Objectives,
Techniques

Communities that thrive are going to be more accepting of
new ideas

Big Growth Enabled by
Community Engineering

Industrial champion(s): M. Fowler, Kent Beck, Ward
Cunningham

Complementary skills: tool builders, paper writers, curators

Mindset for industrial collaboration and adoption

Shared platform:
- Eclipse (Erich Gamma + Frank Tip), analysis frameworks

Community infrastructure: 7 Refactoring Workshops, Dagstuhl
- first workshop in 2007, 50+ participants, 32 posters
- invited all major IDE providers
- growing new leaders

13

14

Published ICSM 2005, receives Most Influential Paper Award in 2015

15

Breaking API Changes Cause Problems for
Applications

16

High-level goal: reduce the burden of reuse
on maintenance

Either reduce the amount of change,
Or reduce the cost of adapting to change

RQ1: Which component changes break
compatibility?

RQ2: What is a suitable representation for these
changes?

RQ3: Does this representation carry both the
syntax and the semantics of changes?

We studied the evolution of real components

17

Main Result: majority of breaking API
changes are Refactorings

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Eclipse Struts M-gage log4j

Refactorings
Behavioral

18

Monitoring Refactorings as Objects of Change

Most of API breaking changes are refactorings
+

Refactorings carry both the syntax and semantics of
the change

Monitor component changes that are refactorings
Replay them on the client code

19

Record & Replay

Key Questions Regarding Refactorings as
Objects of Change

Q1: How many API changes are caused by refactorings?

A: more than 80% [Dig et al.: ICSM’05, JSME’06]

Q2: Can refactorings be detected automatically?

A: practical accuracy [Dig et al. ECOOP’06, Kim et al. ICSM’10,
Tsantallis et al. – ICSE’18]

Q3: Can refactorings be incorporated automatically?

A: refactoring-aware merging [Dig et al.: ICSE’07, TSE’08]

Q4: Can applications be shielded from Refactoring API
changes?

A: Binary adaptation [Dig et al. ICSE’08, Savga et al ICSE’08,]

20

Work by others

Love/hate relationship with refactoring

API analysis [Robbes et al: ICSE’11,Yu et al:ASE’11,Hybl et al:OOPSLA’13, Robbes et al:
FSE’12, Negara et al: ECOOP’13, Vasquez et al: FSE’13, Pinto et al:FSE’12, Kapur et al: OOPSLA’10,
Businge at al: SQC15, Batory: CC’07]

Work on automatic upgrades [Nguyen et al: OOPSLA’10, Dagenais et al: ICSE’08,
Li et al: ASE’12, Wu et al: ICSE’10]

HotSWUp series of workshops [HotSWUp’08, HotSWUp’09, HotSWUp’11,
HotSWUp’12, HotSWUp’13, HotSWUp’14]

Study [Cossete & Walker - FSE’12]: reactive/postmortem techniques
have success rate 20%

21

Reflections and Lessons I am Learning

22

On Aug 5, 2015 …

A life of significance: intentionally serve others

23

RefactoringRefactoring

Parallelism & ConcurrencyMobile
-add async
-fix async
-privacy

Library migration
- upgrade APIs
programs

L1: Work in Your Strength Zone but Reinvent
Yourself

- make thread-safe
- improve throughput
- improve scalability

Principles for changing between different programming models
24

RefactoringRefactoring

Understanding

InferringAutomating

L2: Find Your Dream and then Live It

Testing

-ship with official

- shaped APIs in Java
and .NET official
concurency libraries

-learnparallelism.net
150,000+ visitors

- used at

- dozen labs

- first open-source
refactoring

founded Workshop
on Refactoring Tools,
HotSwUp, Dagstuhl S.

- hundreds of
accepted patches

25

L3: Proactively Look for Opportunities,
but Be Flexible

Expected
Company

Actual
Company

Expected
Target

Actual
Target

Lambda
Expressions

Type migration
at scale

Lambda
Expressions

Async
Programming

26

L4: To Grow Others, Grow Yourself

Do you have a plan for your personal growth?
How do you get better at what you do?
How do you improve your relationships?
How do you gain insight?

27

My Most Important Investment

Jacob Lewis (Summer’16 – ‘17)
Jonathan Harijanto (Summer’16 –’17)
Lily Mast (Summer’15)
Elias Rademacher (Summer’15 - current)
Nicholas Nelson (Summer 2014-15)
Sean McDonald (Summer’14 –Fall’15)
Hugh McDonald (Summer’14 – Fall’15)
Alexandria Shearer (Summer’12)
Kyle Doren (Summer’12)
Lyle Franklin (UIUC, Summer’12)
Alex Gyori (UIUC, Summer’12)
Yuwei Chen (UIUC, Spring 2012)
Anda Bereckzy (UIUC, Fall’11-Spring’12)
Alex Sikora (UIUC, Fall’11)
Jack Ma (UIUC, Summer’11)
Lorand Szacaks (UIUC, Summer’11)
Caius Brindescu (UIUC, Summer’11)
Mihai Codoban (UIUC, Summer ‘11)
Mihai Tarce (UIUC, Summer’09)
Cosmin Radoi (UIUC, Summer’09)
John Marrero (MIT, Spring’08 – Summer’08)

Michael Hilton (PhD’17, now at CMU)
Semih Okur (PhD’16, now at Microsoft)
Yu Lin (PhD’15, now at Google)
Stas Negara (PhD ‘13, now at Google)
Ameya Ketkar (PhD)
Tom Dickens (PhD)
Sruti Srinivasa (PhD)
Shane McKane (MS’17, now at Intel)
Mihai Codoban (MS ‘15, now at Microsoft)
Kendall Bailey (MS ‘15, now at Intel)
Cosmin Radoi (MS ‘13, now PhD student UIUC)
Sandro Badame (MS ‘12, now at Google)
Fredrik Kjolstad (MS 2011, now PhD student MIT)
Binh Le (MS 2009, SW developer)
Can Comertoglu (MS 2009, now at Microsoft)

28

Call to Action

Big growth enabled by “refactoring” the refactoring

Teamwork makes the dream work

Change is the only guaranteed constant

L1: work in your strength zone, but reinvent yourself

L2: find your dream and then live it

L3: proactively look for opportunities, be flexible

L4: to grow others, first grow yourself

29

