MAPPING THE LANDSCAPE OF REFACTORING
RESEARCH

AKA — REFACTORING THE REFACTORING
Danny Dig

Oregon State

UNIVERSITY

0 S u UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
™

What is Refactoring?

“A change made to the internal structure of EEFACTTQENG
software to make it easier to understand and or Bxists Cone
cheaper to modify without changing TN FowLE

its observable behaviour” — M. Fowler [1999]

R EFACTORING
TO PATTERNS

WORKING
EFFECTIVELY
WITH

LEGACY CODE

Refactor Navigate Search Project Ru

Rename... ¥R
Move... LEVY

Michasl| [. Feathers
- oaern IDEs Change Method Signature... X#C
- In 2000, | created the first Extract Method... M

. Extract Local Variable... 3L
open-source refactoring tool i ~ 38K
Inline... |

Refactoring research growth

2,880 refactoring papers (4,944 authors) since 1990

of publications

317

221 221

Reracrorive
e

Luraoats Tax Descs

B IntelljIDEA
23 /

2 1 1

* o o o
1993 1994 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year

The Humble Beginnings

First refactoring paper:
- Bill Opdyke and Ralph Johnson [SOPPA’90]: Refactoring, an

Aid in designing application frameworks and evolving OO systems

PhD dissertations:
- Bill Griswold ‘91 at U of Washington

- Bill Opdyke 92 at U of lllinois
- Don Roberts ‘99 at U of lllinois

Refactoring research hard to publish in early 90s
- conflated with the compiler community

Most recent Decade of Refactoring Research

of publications

2,880 refactoring papers since 1990

2,442 papers between 2005-2016

221 221

f y’.‘_. = __.'%%

2 (1|11 it
9P g0
1993 1994 1956 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

WVaone

Corpus of Papers

Work done by Marouane Kessentini and his team at Michigan

Scopus and Web of Science

- "Refactoring” in title, abstract, and keywords
- yielded 3277 papers

Refactoring definition:
- transformation with behavior preservation

Manual validation of ALL papers:

- each paper analyzed title, abstract (and sometimes content)
- 4 grad students who took a graduate class on Softw QA,
- Kessentini (faculty) looked at the contentious papers

In the end we removed 397 papers

Citations

O1: To Grow, Welcome Outsiders,
Champions from Other Communities

Number of citations and publications, 2005-2016

« 8§00 citations
= o 37 pubs

700
600
500

400

300 | /
200
100

0

N & & N Q & & 2 2 G & < Q & Q
O & & F G W N R S TP R VS S S

& ° N e Nl & : & © o . & & OO

& NG = 3 <] O W@ Q o) A N R G)

Q ,Q(\ Q h () s & & W 0@“ & o & N & O o <8 o) =

50 ?’Q \? 6@0 /\a"”& <& &6\ ¢ éb ,,é@ 2 'b\»'

< S & g

9 & & [@
o > $ N N
Q

(%) ~ w w 5 ~
=1 th ©] =] o]
Publications

-
w

i
<

02: To Grow, Expand Focus of Interest
(the WHAT)

automating
insight

- testing
prioritization

fﬁ’& “’”“\ ’/}nference

mendatlon

“. nnnnnnnn

2005 2006 2007 2008 2000 20010 2011 2012 2013 22014 2015 2016

s 20 MM 2N S I0N s O pportunkies | 2SLE

Automation —— Prior Tz ation s, | I BCEMIC B

Expand focus to meet new needs that you can serve

0O3: To Grow, Expand the Target Artefacts

160

9 models

80
code

70
60 .
_architecture

50

4'.10 Database, 68
30

20 alits.. o | . . . f Medels, 705 ‘
10 | DB !,

2005 2006 2007 2008 2005 2010 2011 2012 2013 2014 2015 2016 = A

s Code = Architecture = Ul Models = Database

Code, 729

e CO e s Architecture]| Models == Database

Expand target: new refactoring research is about change

to the code, models, architecture, DB, Ul)

O4: To Grow, Expand Objectives (the WHY)

60
performance
N /
50 r:;’., 1&_%“ § 7 Vg
!f.i' = —:._._L.._:__«__:__'_,'\—}’ - -
2 internal quality
30 i
S e c u rit Security, 102 12 o
- y
/ -] Migration, 91 N ’ I 62‘5'91;'3'
- migration |
[:i(.:“‘ .
o \
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 0
Performance, 346
s External Quality s |nternal Quality Performance Migration = Security SEHSH G, SRR PSS R R S

Expand Objectives: new refactoring research is to improve
performance, security, migration (beyond internal quality)

10

O5: To Increase Practical Impact,
Work with Industry

, Open-source data

industrial data .

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

e | N us trial Open source

Industrial collaboration levels:
- surveys with practitioners
- tool validated on industrial codebase
- tool licensed to industry, adopted in products

11

Big Growth of the Field: Expanding Definition

“A change made to the internal structure of software to
make it easier to understand and cheaper to modify
without changing its observable behaviour” — M. Fowler '99

Expanded Focus, Objectives,
vTechniq ues

“Automation/insight/testing/prioritization of changes to
the artifacts of software to improve non-functional

requirements and without changing its proper, intended
behaviour” — D. Dig ‘17

Communities that thrive are going to be more accepting of
new ideas

12

Big Growth Enabled by
Community Engineering

Industrial champion(s): M. Fowler, Kent Beck, Ward
Cunningham

Complementary skills: tool builders, paper writers, curators
Mindset for industrial collaboration and adoption

Shared platform:
- Eclipse (Erich Gamma + Frank Tip), analysis frameworks

Community infrastructure: 7 Refactoring Workshops, Dagstuhl
- first workshop in 2007, 50+ participants, 32 posters
- invited all major IDE providers
- growing new leaders

The Role of Refactorings in API Evolution

Danny Dig and Ralph Johnson
Department of Computer Science
University of Illinois at Urbana-Champaign
201 N. Goodwin
Urbana, IL 61801, USA

Published ICSM 2005, receives Most Influential Paper Award in 2015

Abstract

Frameworks and libraries change their APIs. Migrat-
ing an application to the new API is tedious and disrupts
the development process. Although some tools and ideas
have been proposed to solve the evolution of APIs, most
updates are done manually. To better understand the re-
quirements for migration tools we studied the API changes
of three frameworks and one library. We discovered that
the changes that break existing applications are not ran-
dom, but they tend to fall into particular categories. Over
80% of these changes are refactorings. This suggests that
refactoring-based migration tools should be used to update
applications.

component and application developers. What is a suitabl
representation for the changes that happened in a compc
nent? Can it be gathered automatically? Does this represer
tation carry both the syntax and the semantics of changes
Can it lead to safe, automatic updating of component-base
applications? How much of the effort spent on updatin
component-based applications can be saved?

Although there are principles of software evolution th:
are true for software in any language, programming lar
guages have an impact on software evolution. We are pa
ticularly interested in the evolution of object-oriented con
ponents (we refer to both library and framework as comr
ponent, unless a distinction is necessary). Classes contain
mixture of private and public methods. The public method
are the ones that are meant to be used by application prc
grammers. The set of public methods of a class library mak

Breaking APl Changes Cause Problems for

Applications
| Toe

Web Application Development

1367 JHotDraw
58

15

High-level goal: reduce the burden of reuse
on maintenance

Either reduce the amount of change,
Or reduce the cost of adapting to change

RQ1: Which component changes break
compatibility?

RQ2: What is a suitable representation for these
changes?

RQ3: Does this representation carry both the
syntax and the semantics of changes?

We studied the evolution of real components

Main Result: majority of breaking API
changes are Refactorings

100% - pp—
90% -
80% -
70% -
60% -
50% - "] Refactorings
40% 1 | H Behavioral
30% -
20% -
10% -

0% -

Eclipse Struts M-gage logdj

Monitoring Refactorings as Objects of Change

Most of API breaking changes are refactorings
+

Refactorings carry both the syntax and semantics of
the change

:/ Monitor component changes that are refactorings
< Replay them on the client code

18

Create Script 2

Ik n o ol kot o vaan h B i Al il ki e e Bt ko e o

' Apply Script .
pply P \ 3) = 100% B8 E= Wed6:14PM DannyDig Q =
Replay refactorings from a refactoring script. =

Al b wr—
_l S &' Java 3 Debug
52 =8
- _._‘=-'_' ‘a kso ,L = B
Refactorings to replay: gy R e
” 7 i) nderThreads
¥ dn:l_li RefaCtormgS BlenderThreads(Bufferedim [
«|Rename method 'computePi' process{ : void 9
9] g
9]
L
Bion. » Changes
wvoluticn.
.i' uction
ote to keep
Details:
1
Rename method 'pi.PiApproximation.computePi(...)' to 'computePiValue' -
- Original project: ‘'mps_1_sol'
- Original element: 'pi.PiApproximation.computePi(...)'
- Renamed element: 'pi.PiApproximation.computePiValue(...)’
- Update references to refactored element -B2-—-0 E

(?) < Back Next > Cancel Finish

I
.

»»i B Workl / +J

Key Questions Regarding Refactorings as
Objects of Change

Q1: How many API changes are caused by refactorings?
A: more than 80% [Dig et al.: ICSM’05, JSME’06]

Q2: Can refactorings be detected automatically?

A: practical accuracy [Dig et al. ECOOP’06, Kim et al. ICSM’10,
Tsantallis et al. — ICSE’18]

Q3: Can refactorings be incorporated automatically?
A: refactoring-aware merging [Dig et al.: ICSE’07, TSE’08]

Q4: Can applications be shielded from Refactoring API
changes?

A: Binary adaptation [Dig et al. ICSE’08, Savga et al ICSE’08,]

Work by others

Love/hate relationship with refactoring

API analysis [Robbes et al: ICSE11,Yu et al:ASE™11,Hybl et al:00PSLA'13, Robbes et al:

FSE’12, Negara et al: ECOOP’13, Vasquez et al: FSE’13, Pinto et al:FSE’12, Kapur et al: OOPSLA’10,
Businge at al: SQC15, Batory: CC’07]

Work on automatic upgrades [Nguyen et al: 0OPSLA*10, Dagenais et al: ICSE’08,
Li et al: ASE’12, Wu et al: ICSE’10]

HotSWUp series of workshops [Hotswup'0s, Hotswup'09, Hotswup*11,
HotSWUp’12, HotSWUp*13, HotSWUp’14]

Study [cossete & walker - FsE'12]: reactive/postmortem techniques
have success rate 20%

Reflections and Lessons | am Learning

22

On Aug 5, 2015

L1: Work in Your Strength Zone but Reinvent

Yourself
Mobile Parallelism & Concurrency
-add async
-fix async - make thread-safe
-privacy - improve throughput

- improve scalability

Refactoring

Library migration
- upgrade APIs

Principles for changing between different programming models

24

L2: Find Your Dream and then Live It

Automating
-ship with offici2

27 NetBeans IDE
Da Visual Studio

- hundreds of
accepted patches

R . Inferring
eclipse

founded Workshop
on Refactoring Tools,
HotSwUp, Dagstuhl S.

Refactoring

- first open-source

refactoringij@

Understanding

- shaped APIs in Java
and .NET official
concurency libraries

Testing
ORACLE

-learnparallelism.net
150,000+ visitors

L3: Proactively Look for Opportunities,
but Be Flexible

Expected Actual Expected Actual
Company Company Target Target

FETE ORACLe Lambda Lambda

=== Expressions Expressions

Co 816 Co Sle Async Type migration
Programming at scale

L4: To Grow Others, Grow Yourself

-

Do you have a plan for your personal growth?
How do you get better at what you do?

How do you improve your relationships?

How do you gain insight?

27

My Most Important Investment

Michael Hilton (PhD’17, now at CMU)
Semih Okur (PhD’16, now at Microsoft)
Yu Lin (PhD’15, now at Google)

Stas Negara (PhD ‘13, now at Google)
Ameya Ketkar (PhD)

Tom Dickens (PhD)

Sruti Srinivasa (PhD)

Shane McKane (MS’17, now at Intel)

Mihai Codoban (MS ‘15, now at Microsoft)

Kendall Bailey (MS ‘15, now at Intel)

Cosmin Radoi (MS ‘13, now PhD student UIUC)
Sandro Badame (MS ‘12, now at Google)

Jacob Lewis (Summer’16 — “17)
Jonathan Harijanto (Summer’16 —'17)
Lily Mast (Summer’15)

Elias Rademacher (Summer’15 - current)
Nicholas Nelson (Summer 2014-15)
Sean McDonald (Summer’14 —Fall’15)
Hugh McDonald (Summer’14 — Fall’15)
Alexandria Shearer (Summer’12)

Kyle Doren (Summer’12)

Lyle Franklin (UIUC, Summer’12)

Alex Gyori (UIUC, Summer’12)

Yuwei Chen (UIUC, Spring 2012)

Anda Bereckzy (UIUC, Fall’11-Spring’12)
Alex Sikora (UIUC, Fall’11)

Fredrik Kjolstad (MS 2011, now PhD student MIT) Jack Ma (UIUC, Summer’11)

Binh Le (MS 2009, SW developer)

Can Comertoglu (MS 2009, now at Microsoft)

Lorand Szacaks (UIUC, Summer’11)
Caius Brindescu (UIUC, Summer’11)
Mihai Codoban (UIUC, Summer ‘11)
Mihai Tarce (UIUC, Summer’09)
Cosmin Radoi (UIUC, Summer’09)

John Marrero (MIT, Spring’08 — Summer’08)
28

Call to Action

Big growth enabled by “refactoring” the refactoring
Teamwork makes the dream work

Change is the only guaranteed constant

L1: work in your strength zone, but reinvent yourself
L2: find your dream and then live it

L3: proactively look for opportunities, be flexible
L4: to grow others, first grow yourself

29

