
Mining motivated trends of usage
of Haskell libraries

Marc Juchli,∗ Lars Krombeen,∗

Shashank Rao,∗ Chak Shun Yu∗
Delft University of Technology

{M.B.Juchli, L.Krombeen, S.P.Rao, C.S.Yu}@student.tudelft.nl

Anand Ashok Sawant, Alberto Bacchelli
Delft University of Technology

{A.A.Sawant, A.Bacchelli}@tudelft.nl

Abstract—We propose an initial approach to mine the usage
trends of libraries in Haskell, a popular functional programming
language. We integrate it with a novel, initial method to automat-
ically determine the reasons of clients for switching to different
versions. Based on these, we conduct a preliminary investigation
of trends of usage in Haskell libraries. Results suggest that trends
are similar to those in the Java ecosystem and in line with Rogers
theory on the diffusion of innovation. Our results also provide
indication on Haskell libraries being all by and large stable.

I. INTRODUCTION

Choosing the appropriate software library to use for a spe-
cific use case is not an easy task [1]. Even when this decision
is made, it is still not trivial to choose what version should be
used or what updating behavior should be followed [2], [3].
In fact, although newer versions of software libraries tend to
introduce new functionalities, to remove obsolete features, and
to ensure better security, upgrading to the latest version is not
to be taken lightly. For instance, an update might deprecate a
heavily used feature, might break existing functionality with
unforeseen changes, and might change the protocol to interact
with the provided components [2]. Even when adopting a
previously unused API, clients do not necessarily adopt the
latest version of the API, but put more thought into choosing
the appropriate version to use given that introduction of a new
API may be incompatible with existing dependencies. This
behavior is observed in an existing database containing API
usage [4]. Overall, making the right choice in which version
of an API to use is hard.

Mileva et al. theorized that by using wisdom of the crowd,
we can recommend which versions of an API should be
used [2]. They proposed AKTARI, a tool for Java libraries,
that provides such recommendation based on three metrics:
usage trends, current most popular version, and switch backs
to earlier versions. They provided initial evidence that these
three metrics are a useful basis to help developers decide which
version of a library to use.

In this paper, we make the first steps in expanding on this
previous work by: (1) introducing an approach to mine library
usage information for a functional programming language (i.e.,
Haskell), (2) proposing a method to automatically infer the

∗Marc, Lars, Shashank, and Chak contributed equally to the work and are to
be considered all first authors. This work was developed as part of the Master
course Mining Software Repositories at Delft University of Technology.

reasons why developers decide to switch a library version,
and (3) conducting an initial exploration of the behavior of
clients of Haskell libraries. With our effort, we strive to
explore the angle of functional programming paradigm, which
may present differences with respect to the object-oriented
paradigm investigated in the initial approach by Mileva et
al. [2]. In addition, we want to help developers base their
decisions on the version of a library to use not only on trends,
popularity, and switch backs, but also on why these occur.

II. MINING USAGE INFORMATION

We propose a method to mine usage information for
libraries of a functional programming language. As target
language, we select Haskell because it is a purely functional
language and allow us to conveniently use Hackage [5] as our
source of data. Hackage is the Haskell community’s central
programming library archive. It contains the published ver-
sions of each library, how many times these were downloaded,
and the packages that each library depends on. Haskell library
developers use Hackage to publish their libraries so that they
can be used in another project as a dependency, similarly to
how Java API developers use Maven central [6].

The projects on Hackage are APIs/libraries, which can be
treated as regular Haskell projects with dependencies hosted
on Hackage as well. One advantage of using Hackage based
projects is that these projects use the building and packaging
system Cabal [7]. The downside of this approach is that we
focus on a specific type of Haskell projects (i.e., libraries). A
more comprehensive approach would use Haskell projects that
can be found on platforms such as GitHub; however, there
is no guarantee that they use Cabal, thus any data mined
from them would lack in important version information. In
this study, we decide to focus on Hackage based projects and
leave a more comprehensive choice of projects and tackling
the associated challenges to future work.

Similarly to Maven, which uses a POM file to explicitly
declare a projects’ dependencies, Cabal uses a file that declares
all the build dependencies of the Haskell project, including the
version of the API that is being used. One can, thus, determine
the popularity of existing Haskell libraries. Moreover, since the
content of Hackage is stored in a Git repository, one can get
evolutionary data on the packages hosted on Hackage, their
versions, and their cabal files.



Our approach parses all the cabal files for each hosted
project on Hackage and all its versions, and collects their build
dependencies. Subsequently, it computes how many times a
package is being used in its various versions. Information
on when a new release was made and when the cabal file
changed is not available from the Git repository. Therefore,
our approach crawls the Hackage website to find the webpage
for each of the versions of a library and parse the release date.

A. Determining the used library version

Resolving the exact version of the library that is being used
by a project is not trivial. In fact, the way in which one can
specify range of versions and wild card characters allows an
undetermined number of library versions to be valid dependen-
cies; as in the following three valid cabal package definitions:
(1) ‘pkgname >= v’, (2) ‘pkgname >= v1 && < v2’,
and (3) ‘pkgname == v.*’. With the following notation,
we describe the ways in which a package can be defined:

GT(v) ; GETandLT(v1, v2) ; EQ(v, wc)

When we are parsing the version information from each
cabal file, we attempt to identify the category of package
definition that is being used in the cabal file. Once we can
identify the type of package definition being used (one of GT,
GETandLT or EQ), the next step is resolving the absolute
version this definition corresponds to. However, in most cases
the version definition in the cabal file corresponds to one of
the GT orGETandLT types, while absolute version definitions
of the type EQ are rarely to be seen. In fact, even in the case
that there is the usage of the EQ type of version definition, we
see that a wild card is used.

We describe two approaches to resolve the version of the
used API and overcome the issues with the various complex-
ities of the version definition mechanism that cabal provides.

With the first approach, one could reconstruct the version
resolving process as it must have happened at the time of
committing the cabal file. Therefore, the publication date of the
release of the library and the dependency we are investigating
serves as the commit date for the version definition. For exam-
ple, if project A-1.0 was released on date D and depends on
library L with version definition V (e.g. L >= 1 && < 2),
one would look up our available data and see which was the
latest possible version of library L that was published at date
D. However, with this approach we would see more version
upgrades than those that actually performed, since it would
not be clear whether the developer is the one who decided
to perform an upgrade of the version being used, given the
version definition is left unchanged.

With the second approach, given a version definition D, the
absolute corresponding version will not be resolved. Instead,
one relies completely on the version definition – in a slightly
modified way. For the EQ version definition wild-cards will be
neglected, for GETandLT, we only consider the upper bound
of the definition and for GT we consider the lower bound of
the definition. Thus, the resolver can be described as follows:

GT(v) → v ; GETandLT(v1, v2) → v2 ;
EQ(v, wc) → v

By always selecting the boundary cases, we ensure that we
get an accurate count of the version upgrade that is performed.
As the boundary case changes to reflect that newer versions
of the library are suitable for this project, we can increment
the version that the project is using. Given that the second
solution does not suffer from the same limitations as the first,
we choose the second one to use in our approach to mine
usage information of Haskell libraries.

III. INFERRING REASONS BEHIND SWITCHING

Mileva et al. analyzed the trend of version usage of a library
over time. They looked at whether the adoption of a new
version of a library was impacted by a bug in that version
and whether this lead to rollbacks of the version being used.
With this paper, we propose a language independent approach
to also analyze the rationale behind the client making a change
to the version of the library being used.

We use Hackage as a source of clients of Haskell APIs.
To infer the reasons behind the change of a library version,

our approach analyzes the commit messages. One caveat here
is that a commit message on its own might not reveal the
reason behind the change in a Cabal file, however, it is the
best resource available to us in this study. In the future it
would be prudent to investigate additional reasons behind the
change in a Cabal file by analyzing resources such as issue
tracker, API documentation and code comments. It starts with
a pre-processing phase to (1) remove the non-alphabetical
characters and stop-words and (2) stem the remaining words.
Stemming simplifies how messages can be group together
based on their content, e.g., “fixed” and “fix” should be
grouped together. Subsequently, our approach classifies the
commits using keywords [8], [9]. We consider the keywords
by Mauczka et al., who created an algorithm that develops a
weighted dictionary of keywords to classify commits based on
their commit messages [10]. The dictionary that they created
using their algorithm had a classification rate of 80.34%
based on 8 open source projects, which all had at least
30, 000 commits [10]. We use the final dictionary created by
the algorithm of Mauzcka et al. to classify commits into 3
categories [10], [11]:
Corrective. Commits that fix errors, failures and bugs con-

cerning performance or the implementation.
Adaptive. Commits that add/change functionalities.
Perfective. Commits that increase performance, decrease re-

dundancy and inefficiency, increase maintainability, or
improve the layout and code style.

We apply this classification mechanism only to commits
interesting to our purpose: Those that make a change to
the build management system configuration. In the case of
Hackage as a source of clients of Haskell APIs, interesting
commits are those that modify the cabal files, e.g., to add a
library or to remove/change the version of a used library.

Based on the type of modification i.e., whether a new
dependency definition was added or whether one was removed,



we see as to what the change pattern is. For instance a new
version definition could be added and the commit message
could indicate that the modification is of a corrective type,
thus combining these two facts our approach suggests that this
new version of the library fixes some bug that was previously
present probably due to an error in the previous version of the
library. Table I shows a summary.

TABLE I: Reasons behind the change in dependency based on
the type of source code change and the commit category.

Change Category Reason
Addition Corrective Compatible with the project
Addition Adaptive Dependency needed for new patch or feature
Addition Perfective Improvement of project
Deletion Corrective Removed for bugfix
Deletion Adaptive Compatibility issues
Deletion Perfective Not relevant / Unused

a) Addition and Corrective (ADD-COR). The addition of a
library in a corrective commit suggests that the library fixes
some failure or error in the project. When this is combined
with the deletion of another library, it may indicate that this
library may be better than other similar libraries.
b) Addition and Adaptive (ADD-ADP). The addition of
a library in an adaptive commit suggests that the library is
required for correctly implementing a certain patch or feature.
Thus, indicating that the library or the library version added
may be beneficial for the project and aid in its evolution.
c) Addition and Perfective (ADD-PER). A library being
added in a perfective commit could be due to a several
scenarios. For example, a library was added to increase
performance or maintainability, to decrease inefficiency, or to
perform stylistic changes. Since these possible scenarios differ
so much, we conservatively say only that this combination is
a improvement to the project.
d) Deletion and Corrective (DEL-COR). A library deleted in
a commit responsible for fixing errors, faults, or bugs (Correc-
tive) suggests that the usage of the library introduced unfore-
seen and undesired consequences into the project. Therefore,
the library dependency was dropped to fix the bug(s).
e) Deletion and Adaptive (DEL-ADP). The deletion of a
library in a commit that is responsible for adding or changing
functionalities (adaptive) can be down to three potential sce-
narios: (1) the removed library did not provide the desired
functionality, (2) the library was not compatible, (3) another
library is better suited for the project. Overall, the library and
project are not compatible with each other.
f) Deletion and Perfective (DEL-PER). As we consider per-
fective commits to be past the points of actual implementation,
no major changes would be made in perfective commits in-
volving changes in library dependencies. Only minor changes
will be made like cleaning up or beautifying the source code.
In these cases, the deletion of a library dependency will most
likely be the removal of it due to it not being used or it could
have been replaced by another.

Our approach conducts this classification for every library
and its version as specified in the cabal file. After the whole

process of data collection, we obtain for every library with
its version the number of occurrences for each of the com-
binations specified above. A limitation to the validity of our
approach is that we do not conduct a manual validation of
the commits to establish the accuracy of our classification
technique; we propose this validation as future work.

IV. INITIAL EVALUATION

Having implemented the approach, we conduct an initial
exploration of the behavior of clients of Haskell libraries.

A. Popularity of versions over time

To find trends among library versions, we compared the
results computed by our approach on the commonly used
Haskell libraries. We distinguish between versions of an API
that have been popularly adopted and those that are unpopular.
As a preliminary threshold for this initial exploration, we
define as popular a version that is used by at least 30%.

Our results show that certain versions are seldom used. It
often happens that these versions are used by some projects
for a long period of time and these projects never upgrade to
a newer version. This situation may indicate that the projects
are fully satisfied with the version.

From our data, we notice two trends in terms of popularity
when a new version of a library is launched: (1) When a
new version is launched, there are a lot of adopters, hence
the version gains popularity so quickly that we can term it as
a popular version; (2) the new version is barely adopted by
projects, thereby becoming an unpopular version of the library.

The versions that we term as popular are adopted by many
clients. Despite the release of newer versions of the library,
these versions are never completely abandoned. For example,
despite 2 years having elapsed since the release of a popular
version and many newer versions being released, this popular
version is continued to be used. This is similar to the trend
observed in Java projects by Sawant and Bacchelli [12].

We observe that for all versions that become popular, the
number of initial adopters is small. Then quite suddenly there
is a large number of adopters of that version. These results in-
dicate that developers are likely to follow the behavior of other
developers, which is similar to the findings of Mileva et al. [2]
and in line with Rogers theory of Diffusion of innovation [13].

For all the Haskell libraries under investigation we see
similar results. The sole difference being the number of
popular versions that we observe at the same time. For
example, the library ‘directory’ often had two versions that
were popular at the same time, whereas it was possible for
the ‘bytestring’ to have three versions that were simultaneously
popular. Similarly to the findings of Sawant and Bacchelli [12],
libraries with several versions released over time have more
than one popular version at a given time.

B. Reasons behind the switching of libraries

We look at the reasons behind the changing of a library for
1, 250 projects. We obtained 2, 220 unique library dependen-
cies from the dependency files of the projects we target. We



wanted to see how each of these dependencies change over
time and what the reasons are behind a change being made.

We observe that over 50% of the library dependency
changes were categorized as either “ADD-ADP” or “DEL-
ADP”. This indicates that over 50% of the dependencies were
changed (added or deleted) to either introduce a new feature
or address the compatibility of a feature that might have
been introduced in an earlier version. Furthermore, we see
that only around 500 dependencies were removed due to the
introduction of bugs or were indirectly associated with them.
That number is small when compared to the total number of
changed dependencies. This suggests that Haskell clients may
not be adversely affected by API evolution on a large scale.

Furthermore, the developers have mostly either added or
deleted a dependency due to corrective or adaptive measures
while perfective measures were of less concern. This may
suggest two scenarios: 1) when Haskell APIs evolve they
do not make any major improvements to existing features
(improvements such as efficiency of execution of a feature)
or 2) clients of libraries do not care much about the minor
improvements afforded by an API.

To further support our reasoning about library changes, we
look at the relation between the categorization of the library
change commits with the statistics from its switchbacks. For
this analysis, we have selected one of the most downloaded
and used library dependencies from Hackage, namely the
lens package. We observed that lens had the most number
of commits (515 commits) that modified its dependency file.
Dependencies of lens have been upgraded 30% of the time
to address or introduce a feature. It also indicates that a library
has been upgraded over 60% of the time to maintain stability
of the lens package.

In conclusion, the trend that we observed from our mined
data was that majority of the libraries were upgraded to
introduce new features and address the compatibility of other
newly added dependencies. Most of the popular libraries
showed equal number of addition and deletion of their library
versions and simultaneously being categorized into corrective
and adaptive metrics; this suggests that these libraries are
quite stable and are upgraded to avoid bugs or incompatibility
issues that may occur due to introduction of newer libraries.
Interestingly, the libraries that we studied were not much
affected by perfective measures like errors in documentation,
refactoring or increasing efficiency and maintenance. This
might be an indication that the developers in the Haskell
community have already ensured good level of stability and
efficiency. However, it could also mean that not much im-
portance is given to these kind of measures as compared to
other measures like preventing bugs and adding features. We
believe that by mining and analyzing more commit messages,
we could possibly state better inferences about the perfective
measures. In this initial exploratory investigation, we did not
investigate the trends we found further, but studies can be
designed and carried out using and extending our approach
to determine whether these trends are confirmed and establish
their causes.

V. CONCLUSION

In this paper, we have presented a technique to identify the
version of a library that a Haskell based project might be using,
we also show how this data can be mined from Hackage on a
large scale. Furthermore, we presented a language independent
technique to infer the reasons that behind a project changing
the library or version of the library it uses.

Based on our techniques, we analyzed the popularity of
library versions, showing that a new version of a library
is either popular or completely unused. We found that the
popularity of a version grows all of a sudden. This is in line
to what was seen in previous studies with the Java ecosystem,
thus suggesting a behavior that transcends the programming
paradigm and that brings more evidence to Rogers’ theory
on the diffusion of innovation. We observed that the majority
of the libraries were upgraded to introduce new features and
address the compatibility of other newly added dependencies.
Only few changes made to dependencies were due to the
fact that an upgrade would have been improved existing
functionality. We also see that there are few corrective or
adaptive changes, which suggests that the libraries may be
all by and large stable.

REFERENCES

[1] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
OOPSLA. ACM, 2006, pp. 681–682.

[2] Y. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends of
library usage,” in Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops. ACM, 2009, pp. 57–62.

[3] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining
and recommending api usage patterns,” ECOOP 2009–Object-Oriented
Programming, pp. 318–343, 2009.

[4] A. A. Sawant and A. Bacchelli, “A dataset for api usage,” in Proceedings
of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 506–509.

[5] J. G. Morris, “Experience report: Using hackage to inform language
design,” in ACM Sigplan Notices, vol. 45, no. 11. ACM, 2010, pp.
61–66.

[6] S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proceedings of the
10th Working Conference on Mining Software Repositories. IEEE Press,
2013, pp. 221–224.

[7] I. Jones, “The haskell cabal, a common architecture for building appli-
cations and libraries,” 2005.

[8] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli,
and P. Devanbu, “On the naturalness of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 428–439.

[9] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in Software Maintenance, 2000. Proceedings.
International Conference on. IEEE, 2000, pp. 120–130.

[10] A. Mauczka, M. Huber, C. Schanes, W. Schramm, M. Bernhart, and
T. Grechenig, “Tracing your maintenance work–a cross-project valida-
tion of an automated classification dictionary for commit messages,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2012, pp. 301–315.

[11] A. E. Hassan, “Automated classification of change messages in open
source projects,” in Proceedings of the 2008 ACM symposium on Applied
computing. ACM, 2008, pp. 837–841.

[12] A. A. Sawant and A. Bacchelli, “fine-grape: fine-grained api usage
extractor–an approach and dataset to investigate api usage,” Empirical
Software Engineering, pp. 1–24, 2016.

[13] E. M. Rogers, Diffusion of Innovations, 5th, Ed. Free Press, 2003.


